

ST.ANNE’S
COLLEGE OF ENGINEERING AND TECHNOLOGY

(AN ISO 9001:2015 CERTIFIED INSTITUTION)

ANGUCHETTYPALAYAM, PANRUTI – 607 106

EC6711 EMBEDDED LABORATORY

 (FOR IV B.E ELECTRONICS AND COMMUNICATION ENGINEERING STUDENTS)

 NAME : ___

 REGISTER NO : ___

 SEMESTER : ___

JULY 2018 - NOV 2018

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

PREPARED BY: Mr. S. BALABASKER(ASP/ECE)

AS PER ANNA UNIVERSITY (CHENNAI) SYLLABUS

2013 REGULATION

OBSERVATION NOTE

ABOUT OBSERVATION NOTE & PREPARATION OF RECORD

 This Observation contains the basic diagrams of the circuits enlisted in the syllabus

of EC6711 EMBEDDED LABORATORY course, along with the design the design

of various components of the circuit and controller.

 Aim of the experiment is also given at the beginning of each experiment. Once the

student is able to design the circuit as per the circuit diagram, he/she is supposed to

go through the instructions carefully and do the experiments step by step.

 They should note down the readings (observations) and tabulate them as specified.

 It is also expected that the students prepare the theory relevant to the experiment

referring to prescribed reference book/journals in advance, and carry out the

experiment after understanding thoroughly the concept and procedure of the

experiment.

 They should get their observations verified and signed by the staff within two days

and prepare & submit the record of the experiment while they come for the

laboratory in subsequent week.

 The record should contain experiment No., Date ,Aim, Apparatus required, Theory,

Procedure and result on one side(i.e., Right hand side, where rulings are provided)

and Circuit diagram, Design, Model Graphs, Tabulations and Calculations on the

other side (i.e., Left hand side, where no rulings is provided)

 All the diagrams and table lines should be drawn in pencil

 The students are directed to discuss & clarify their doubts with the staff members as

and when required. They are also directed to follow strictly the guidelines

specified.

EC6711 EMBEDDED LABORATORY

SYLLABUS

LIST OF EXPERIMENTS

1. Study of ARM evaluation system

2. Interfacing ADC and DAC.

3. Interfacing LED and PWM.

4. Interfacing real time clock and serial port.

5. Interfacing keyboard and LCD.

6. Interfacing EPROM and interrupt.

7. Mailbox

8. Interrupt performance characteristics of ARM and FPGA.

9. Flashing of LEDS.

10. Interfacing stepper motor and temperature sensor.

11. Implementing zigbee protocol with ARM.

OUTCOMES:

At the end of the course, the student should be able to:

 Write programs in ARM for a specific Application

 Interface memory and Write programs related to memory operations

 Interface A/D and D/A convertors with ARM system

 Analyse the performance of interrupt

 Write programmes for interfacing keyboard, display, motor and sensor.

 Formulate a mini project using embedded system

LIST OF EXPERIMENTS

S.NO DATE NAME OF THE EXPERIMENT
PAGE

NO

DATE OF

SUBMISSION

MARK

(10)
SIGNATURE

LIST OF EXPERIMENTS

S.NO DATE NAME OF THE EXPERIMENT
PAGE

NO

DATE OF

SUBMISSION

MARK

(10)
SIGNATURE

INTRODUCTION TO KEIL µ VISION 4 SOFTWARE

The µVision4 IDE is a Windows-based software development platform that

combines a robust editor, project manager, and makes facility. µVision4 integrates all tools including the

C compiler, macro assembler, linker/locator, and HEX file generator. µVision4 helps expedite the

development process of your embedded applications by providing the following:

 Full-featured source code editor

 Device database for configuring the development tool setting

 Project manager for creating and maintaining your projects

 Integrated make facility for assembling, compiling, and linking your embedded applications

 Dialogs for all development tool settings

 True integrated source-level Debugger with high-speed CPU and peripheral simulator

 Advanced GDI interface for software debugging in the target hardware and for connection to

Keil ULINK

 Flash programming utility for downloading the application program into Flash ROM

 Links to development tools manuals, device datasheets & user’s guides

The µVision4 IDE offers numerous features and advantages that help you quickly and

successfully develop embedded applications. They are easy to use and are guaranteed to help you

achieve your design goals.

The installation steps for keil software are given below:

1. Double click on Keil µvision4 exe file.

2. Then click on Next.

3. Tick the check box towards to license agreements and click Next.

4. Select Destination folder and click Next.

5. Fill the necessary text boxes and click Next.

6. Finally click on Finish.

Software Flow

First open the icon keil µvision4 and the follow the steps are given below. The menu

bar provides you with menus for editor operations, project maintenance, development tool option

settings, program debugging, external tool control, window selection and manipulation, and on-line help.

The toolbar buttons allow you to rapidly execute µVision4 commands. A Status Bar provides editor and

debugger information. The various toolbars and the status bar can be enabled or disabled from the View

Menu commands.

Creating a New Project

Below mentioned procedures will explains the steps required to setup a simple application and to generate HEX

output.

STEP 1: Go to “Project” and close the current project “Close Project”.

STEP 2: Go to the “Project” and click on “New µvision Project”

STEP 3: A small window will pop up with name “Create New Project” and can be create and select

destination path.

STEP 4: Create a folder and give a proper name that can be related to the Project.

STEP 5: A small window will pop up with name “Select Device for Target ‘Target 1’”, and select the data

base NXP founded by Philips.

STEP 6: Within the NXP founded by Philips select LPC2148.

STEP 7: Add Startup file to the project by clicking “Yes”.

STEP 8: Next go to “File” and click “New”.

STEP 9: There are the main three windows are available in the keil IDE. First one is Project Workspace,

second one is Editor Window and third one is Output Window.

STEP 10: Can be start to write asm/c code on the editor window.

STEP 11: Can be save the file, if the program is in “C” save as “filename.C” or else save as “filename.ASM”.

STEP 12: Add this source file to Group1, Go to the “Project Workspace” drag the +mark “Target 1” in

that right click on “Source Group1” and click on “Add Files to Group “Source Group1””.

STEP 13: A small window will pop up with name “Add Files to Group Source Group1”, by default, the

Files of type will be in C source Files (*.C). If the program is in C, have to select C source Files (*.C) or

select ASM Source file (*.s,*.src,*.a*).

STEP 14: Then go to “Project” click on “Build Target” or F7. Output window will display related error and

warning messages.

Simulation

Part:

STEP 15: Go to “Project” menu, click on “Rebuild all target Files” and start Debug. From View menu can

get Memory Window and from Peripherals can get I/O ports, Serial etc. For access internal memory

type i:0x_memory location example: i:0x30 and for external and program memory x:0x_memory location,

c:0x_memory location respectively. From Register window we can edit and access the values also.

HEX file

creation:

STEP 16: Follow the STEP up to 14, then go to “Project” and click on “Option for Group ‘Source

Group1’”. There a small window will open with name “Option for Target ‘Target1’”. In that window, go to

first menu “Device”, can be select LPC2148.

STEP 17: Next go to Target menu, set clock frequency as 12.0 MHz and select Thumb mode in the code

generation selection box.

STEP 18: Then go to Output menu and click on create HEX file.

STEP 19: Then go to Listing menu and select C preprocessor Listing.

STEP 20: Finally in the Linker menu, click on use memory layout from target dialog and click ok.

STEP 21: For creating Hex file go to “Project” menu and click on “Rebuild all target Files”

FLASH MAGIC

Introduction:

NXP Semiconductors produce a range of Microcontrollers that feature both on-chip Flash

memory and the ability to be reprogrammed using In-System Programming technology. Flash Magic is

Windows software from the Embedded Systems Academy that allows easy access to all the ISP features

provided by the devices.

These features include:

 Erasing the Flash memory (individual blocks or the whole device)

 Programming the Flash memory

 Modifying the Boot Vector and Status Byte

 Reading Flash memory

 Performing a blank check on a section of Flash memory

 Reading the signature bytes

 Reading and writing the security bits

 Direct load of a new baud rate (high speed communications)

 Sending commands to place device in Bootloader mode

Flash Magic provides a clear and simple user interface to these features and more as described in

the following sections. Under Windows, only one application may have access the COM Port at any one time,

preventing other applications from using the COM Port. Flash Magic only obtains access to the selected COM

Port when ISP operations are being performed. This means that other applications that need to use the

COM Port, such as debugging tools, may be used while Flash Magic is loaded. Note that in this manual third

party Compilers are listed alphabetically. No preferences are indicated or implied.

Installation Procedure for Flash Magic

software:

Installation steps are given below:

1. Double click on Flash Magic.exe.

2. Then click on Next.

3. Next accept the agreement and click on Next.

4. Select the destination folders and click on Next then Install.

5. Finally click on Finish.

Programming with communication port

(COM1):

STEP 22: For programming with communication port, first select the device LPC2148 in ARM 7 category,

COM port will be COM 1, baud rate 9600, interface None [ISP], Oscillator frequency 12.0 MHz and click

on erase of flash code Rd plot.

STEP 23: Under the menu Options, go to Advanced options.

STEP 24: Under the menu Advanced options, go to Hardware configuration, click on the Use DTR and

RTS to control RST and ISP pin.

STEP 25: Next browse the path of hex file and select the file.

STEP 26: After selecting ISP mode on the Hardware Kit and click on start.

STEP 27: After the above steps device will start to program.

STEP 28: Finally can be see the finished indication and Reset the device into running mode.

Programming through

USB:

Installation Procedure for USB Cable

Driver: The installation steps are given

below:

STEP 1: Connect the USB cable between ARM-7 LPC2148 Trainer Kit and PC. Connect the power supply to

the trainer kit and power up. After can see a popup window with name “Found New Hardware CP2102 USB

to UART Bride Controller“.

STEP 2: Select on Install from a list or specific location (Advanced) and click “Next”.

STEP 3: Browse for the driver file location and select the folder, click next.

STEP 4: After that can see New Hardware wizard, and then click on finish.

STEP 5: Then right click on My Computer and select manage.

STEP 6: Then go to device manager, in that we have to select ports (COM and LPT) .

There we have to find the COM port which has been selected for USB cable. The same COM

has to be select for Flash Magic.

STEP 7: Repeat the STEP from 22 to 28

ARM 7 LPC2148 TRAINER KIT

Introduction:

Thank you for using ARM 7 LPC2148 Trainer Kit designed for educational training purpose and

the embedded device from NXP. This document is a User’s guide which describes the complete

hardware design of the ARM 7 LPC2148 Trainer Kit.

1. The device LPC2148 from NXP.

2. 12.00 MHz Crystal Oscillator Device speed.

3. 32.768 KHz crystal oscillator for RTC clock.

4. VREF jumper setting for ADC external Voltage reference.

5. 5V Red LED indication.

6. 3V3 Green LED indication.

7. Battery for RTC backup running.

8. Power ON/OFF switch.

9. 9VDC input Power Jack.

10. Input switch for external interrupt.

Optional: can be use for ISP manual Programming Mode.

11. Input switch for Reset the device.

12. ART1 connectivity.

13. UART0 connectivity.

 Optional: Can be use for ISP programming mode.

14. LEDs for PWM output.

15. PWM enable switch.

16. USB connector for ISP programming and Serial port connectivity.

17. LED indication for to confirm the USB connection has been established.

18. Switch selection for ISP/UART. The selection will be for ISP if the switch has been

pressed else for UART.

19. Switch for to enable the ISP.

20. I/O port 10 pin FRC connector (FRC5).

21. I/O port 10 pin FRC connector (FRC4).

22. I/O port 10 pin FRC connector (FRC3).

23. I/O port 16 pin FRC connector (FRC2).

24. I/O port 10 pin FRC connector (FRC1).

25. LPC2148 Device Daughter card.

26. USB ISP programmer daughter card.

Note: For In System Programming (ISP), the switch which has been mentioned in the

description line 18 and 19 has to be pressed.

Features:

 1. Device daughter card, easy and flexible to upgrade the device.

2. Four 10 pin individual digital or analog I/O ports are available.

3. One16 pin digital I/O port is available.

4. Inbuilt LEDs are available for PWM output.

5. Inbuilt push to on switch for Reset.

6. Inbuilt push to on switch for External Interrupt.

7. USB ISP programmer inbuilt.

8. On board Serial to USB bridge is available

Device Daughter Board Details:

CN6

PIN NO: DESCRIPTION

1 P0.21/PWM5/AD1.6/CAP1.3

2 P0.22/AD1.7/CAP0.0/MAT0.0

3 RTCX1

4 P1.19/TRACEPKT3

5 RTCX2

6 VSS

7 VDDA

8 P1.18/TRACEPKT2

9 P0.25/AD0.4/AOUT

10 D+

11 D-

12 P1.17/TRACEPKT1

13 P0.28/AD0.1/CAP0.2/MAT0.2

14 P0.29/AD0.2/CAP0.3/MAT0.3

15 P0.30/AD0.3/CAP0.0/EINT3

16 P1.16/TRACEPKT0

CN7

PIN NO: DESCRIPTION

17 P0.31/UP_LED/CONNECT

18 VSS

19 P0.0/TXD0/PWM1

20 P1.31/TRST

21 P0.1/RXD0/PWM3/EINT0

22 P0.2/SCL0/CAP0.0

23 VDD

24 P1.26/RTCK

25 VSS

26 P0.3/SDA0/MAT0.0/EINT1

27 P0.4/SCK0/CAP0.1/AD0.6

28 P1.25/EXTIN0

29 P0.5/MISO0/MAT0.1/AD0.7

30 P0.6/MOSI0/CAP0.2/AD1.0

31 P0.7/SSEL0/PWM2/EINT2

32 P1.24/TRACECLK

CN8

PIN NO: DESCRIPTION

33 P0.8/TXD1/PWM4/AD1.1

34 P0.9/RXD1/PWM6/EINT3

35 P0.10/RTS1/CAP1.0/AD1.2

36 P1.23/PIPESTAT2

37 P0.11/CTS1/CAP1.1/SCL1

38 P0.12/DSR1/MAT1.0/AD1.3

39 P0.13/DTR1/MAT1.1/AD1.4

40 P1.22/PIPESTAT1

41 P0.14/DCD1/EINT1/SDA1

42 VSS

43 VDD

44 P1.21/PIPESTAT0

45 P0.15/RI1/EINT2/AD1.5

46 P0.16/EINT0/MAT0.2/CAP0.2

47 P0.17/CAP1.2/SCK1/MAT1.2

48 P1.20/TRACESYNC

CN5

PIN NO: DESCRIPTION

49 VBAT

50 VSS

51 VDD

52 P1.30/TMS

53 P0.18/CAP1.3/MISO1/MAT1.3

54 P0.19/CAP1.2/MOSI1/MAT1.2

55 P0.20/EINT3/SSEL1/MAT1.3

56 P1.29/TCK

57 RESET

58 P0.23/VBUS

59 VSSA

60 P1.28/TDI

61 XTAL2

62 XTAL1

63 VREF

64 P1.27/TDO

FRC PIN DETAILS:

FRC 1

PIN NO: DESCRIPTION

1 P0.16

2 P0.17

3 P0.18

4 P0.19

5 P0.20

6 P0.21

7 P0.22

8 P0.23

9 +5V

10 GND

FRC 5

PIN NO: DESCRIPTION

1 P0.25

2 P0.28

3 P0.29

4 P0.30

5 P0.31

6 NA

7 RS232 TX1

8 RS232 RX1

9 +5V

10 GND

FRC 2

PIN NO: DESCRIPTION

1 P0.8

2 P0.9

3 P0.10

4 P0.11

5 P1.16

6 P1.17

7 P1.18

8 P1.19

9 P1.20

10 P1.21

11 P1.22

12 P1.23

13 +5V

14 NA

15 +3V3

16 GND

FRC 3

PIN NO: DESCRIPTION

1 P0.3(SDA0)

2 P0.2(SCL0)

3 P0.14(SDA1)

4 P0.11(SCL1)

5 P0.16 ENT1

6 P0.15 ENT2

7 RS232 TX0

8 RS232 RX0

9 +5V

10 GND

FRC 4

PIN NO: DESCRIPTION

1 P0.0

2 P0.1

3 P0.2

4 P0.3

5 P0.4

6 P0.5

7 P0.6

8 P0.7

9 +5V

10 GND

INTERFACE CARD DETAILS:

LED MODULE
PIN NO DESCRIPTION

1 Led1

2 Led2

3 Led3

4 Led4

5 Led5

6 Led6

7 Led7

8 Led8

9 +5V

10 GND

EEPROM

PIN NO DESCRIPTION

1 SDA

2 SCL

3 NA

4 NA

5 NA

6 NA

7 NA

8 NA

9 +5V

10 GND

LCD

PIN NO DESCRIPTION

1 NA

2 RS

3 R/W

4 EN

5 D0

6 D1

7 D2

8 D3

9 D4

10 D5

11 D6

12 D7

13 +5V

14 -5V

15 +3V3

16 GND

MATRIX KEYPAD

PIN NO DESCRIPTION

1 Row1

2 Row2

3 Row3

4 Row4

5 Column1

6 Column2

7 Column3

8 Column4

9 +5V

10 GND

ADC / TEMPERATURE

PIN NO DESCRIPTION

1 NA

2 AD01

3 NA

4 NA

5 NA

6 NA

7 NA

8 NA

9 +5V

10 GND

DAC

PIN NO DESCRIPTION

1 NA

2 NA

3 NA

4 NA

5 A8

6 A7

7 A6

8 A5

9 A4

10 A3

11 A2

12 A1

13 +5V

14 -5V

15 NA

16 GND

STEPPER MOTOR

PIN NO DESCRIPTION

1 Input1

2 Input2

3 Input3

4 Input4

5 NA

6 NA

7 NA

8 NA

9 +5V

10 GND

ZIGBEE

PIN NO DESCRIPTION

1 NA

2 NA

3 NA

4 NA

5 NA

6 NA

7 RXD

8 TXD

9 +5V

10 GND

TOGGLE SWITCH

PIN NO DESCRIPTION

1 SW1

2 SW2

3 SW3

4 SW4

5 SW5

6 SW6

7 SW7

8 SW8

9 +5V

10 GND

DC MOTOR

PIN NO DESCRIPTION

1 INPUT1

2 ENABLE

3 NA

4 INPUT2

5 NA

6 NA

7 NA

8 NA

9 +5V

10 GND

SEVEN SEGMENT

PIN NO DESCRIPTION

1 SHIFT CLK

2 DATA IN

3 LATCH CLK

4 NA

5 NA

6 NA

7 NA

8 NA

9 +5V

10 GND

FRC CONNECTION DETAILS:

S.No Experiment FRC1 FRC2 FRC3 FRC4 FRC5

1 ADC LCD
ADC

(Change mode)

2 DAC DAC

3 LED LED

4 PWM LED
ADC

(Change mode)

5 RTC LCD

6 EPROM Keypad LCD EPROM

7 Interrupt LED

8 Stepper Motor
Stepper

Motor

9 Temperature Sensor LCD
ADC

(Change mode)

10 Zigbee Transmitter Keypad LCD Zigbee

11 Zigbee Receiver LED Zigbee

12 Seven Segment Display
Seven

Segment

13 Switch with LED
Toogle

Switch
 LED

14 DC Motor
Toogle

Switch

DC

Motor

15 LCD LCD

16 Keypad Keypad LCD

St. ANNE’S CET EC6711 EMBEDDED LAB

1 | Prepared By Mr.s. BALABASKER, ASP/ECE

EXP NO:
LED & FLASHING OF LED’S

DATE

AIM:

To write and execute the program for LED & Flashing Led’s with ARM7 (LPC2148)

processor.

HARDWARE & SOFTWARE TOOLS REQUIRED:

S.No Hardware & Software Requirements Quantity

1 ARM Processor 1

2 USB/FRC Connector 1

3 LED Module 1

4 Power Supply (5V, DC) 1

5 Proteus ISIS Software 1

PROCEDURE

1. Create a New project, Go to “Project” and close the current project “Close Project”.

2. Next Go to the Project New μvision Project Create New Project Select Device for

Target.

3. Select the data base NXP LPC2148.

4. Add Startup file and Next go to “File” and click “New”.

5. Write a program on the editor window and save as “Main.c”.

6. Add this source file to Group and click on “Build Target” or F7.

7. Create a Hex file from “Project” menu and click on “Rebuild all target Files”.

8. Open Flash magic and select the device LPC2148 in ARM 7 category, COM port

will be COM 3, baud rate 9600, interface None [ISP], Oscillator frequency 12.0 MHz

and click on erase of flash code Rd plot.

9. Next browse the path of hex file and select the file.

10. After selecting ISP mode on the Hardware Kit and click on start then device will

start to program

11. Finally can be see the finished indication and values in SPJ Terminal and Reset

the device into running mode.

St. ANNE’S CET EC6711 EMBEDDED LAB

2 | Prepared By Mr.s. BALABASKER, ASP/ECE

LED INTERFACING:

CIRCUIT DIAGRAM:

St. ANNE’S CET EC6711 EMBEDDED LAB

3 | Prepared By Mr.s. BALABASKER, ASP/ECE

PROGRAM:

#include <lpc214x.h>

int i;

int main()

{

IODIR0=(1<<3);

 while(1)

 {

 IOSET0=(1<<3);

 for(i=0;i<120000;i++);

 IOCLR0=(1<<3);

 for(i=0;i<120000;i++);

 }

}

St. ANNE’S CET EC6711 EMBEDDED LAB

4 | Prepared By Mr.s. BALABASKER, ASP/ECE

FLASHING OF LED:

CIRCUIT DIAGRAM:

St. ANNE’S CET EC6711 EMBEDDED LAB

5 | Prepared By Mr.s. BALABASKER, ASP/ECE

PROGRAM:

TYPE-I:

#include <lpc214x.h>

int i;

int main()

{

IODIR0=0x000000FF;

 while(1)

 {

 IOSET0=0x000000AA;

 for(i=0;i<120000;i++);

 IOCLR0=0x000000AA;

 for(i=0;i<120000;i++);

 }

}

TYPE-II:

#include <lpc214x.h>

int i,b;

int main()

{

IODIR0=0x000000FF;

while(1)

 {

 for(b=0;b<8;b++)

 {

 IOSET0=(1<<b);

 for(i=0;i<120000;i++);

 IOCLR0=(1<<b);

 for(i=0;i<120000;i++);

 }

 }

}

St. ANNE’S CET EC6711 EMBEDDED LAB

6 | Prepared By Mr.s. BALABASKER, ASP/ECE

TYPE-III

#include <lpc214x.h>

int i;

int main()

{

IODIR0=(1<<0)|(1<<1)|(1<<2)|(1<<3)|(1<<4)|(1<<5)|(1<<6)|(1<<7);

 while(1)

 {

 IOSET0=(1<<0);

 for(i=0;i<120000;i++);

 IOCLR0=(1<<0);

 for(i=0;i<120000;i++);

 IOSET0=(1<<1);

 for(i=0;i<120000;i++);

 IOCLR0=(1<<1);

 for(i=0;i<120000;i++);

 IOSET0=(1<<2);

 for(i=0;i<120000;i++);

 IOCLR0=(1<<2);

 for(i=0;i<120000;i++);

 IOSET0=(1<<3);

 for(i=0;i<120000;i++);

 IOCLR0=(1<<3);

 for(i=0;i<120000;i++);

 IOSET0=(1<<4);

 for(i=0;i<120000;i++);

 IOCLR0=(1<<4);

 for(i=0;i<120000;i++);

 IOSET0=(1<<5);

 for(i=0;i<120000;i++);

 IOCLR0=(1<<5);

 for(i=0;i<120000;i++);

 IOSET0=(1<<6);

 for(i=0;i<120000;i++);

 IOCLR0=(1<<6);

 for(i=0;i<120000;i++);

 IOSET0=(1<<7);

 for(i=0;i<120000;i++);

 IOCLR0=(1<<7);

 for(i=0;i<120000;i++);

 }

}

St. ANNE’S CET EC6711 EMBEDDED LAB

7 | Prepared By Mr.s. BALABASKER, ASP/ECE

FRONT AND BACK LED:

#include <lpc214x.h>

int b,i;

int main()

{

IODIR0=0x000000FF;

while(1)

{

for(b=0;b<8;b++)

 {

 IOSET0=(1<<b);

 for(i=0;i<120000;i++);

 IOCLR0=(1<<b);

 for(i=0;i<120000;i++);

 }

 for(b=7;b>=0;b--)

 {

 IOSET0=(1<<b);

 for(i=0;i<120000;i++);

 IOCLR0=(1<<b);

 for(i=0;i<120000;i++);

 }

}

}

St. ANNE’S CET EC6711 EMBEDDED LAB

8 | Prepared By Mr.s. BALABASKER, ASP/ECE

SWITCH CONTROLLED LED (1-SWITCH):

CIRCUIT DIAGRAM:

St. ANNE’S CET EC6711 EMBEDDED LAB

9 | Prepared By Mr.s. BALABASKER, ASP/ECE

PROGRAM:

#include <lpc214x.h>

int i,b;

int main()

{

IODIR0=0x000000FF;

IODIR0=~(1<<16);

while(1)

{

if((IOPIN0&(1<<16))==0)

{

for(b=0;b<8;b++)

 {

 IOSET0=(1<<b);

 for(i=0;i<120000;i++);

 IOCLR0=(1<<b);

 for(i=0;i<120000;i++);

 }

}

else

 {

 IOCLR0=0x000000FF;

 }

}

}

St. ANNE’S CET EC6711 EMBEDDED LAB

10 | Prepared By Mr.s. BALABASKER, ASP/ECE

SWITCH CONTROLLED LED (2-SWITCH):

CIRCUIT DIAGRAM:

St. ANNE’S CET EC6711 EMBEDDED LAB

11 | Prepared By Mr.s. BALABASKER, ASP/ECE

PROGRAM:

#include <lpc214x.h>

int i,b;

int main()

{

IODIR0=0x000000FF;

IODIR0=~(1<<16)&~(1<<23);

while(1)

{

if((IOPIN0&(1<<16))==0)

{

for(b=0;b<8;b++)

 {

 IOSET0=(1<<b);

 for(i=0;i<120000;i++);

 IOCLR0=(1<<b);

 for(i=0;i<120000;i++);

 }

}

else if((IOPIN0&(1<<23))==0)

{

 for(b=7;b>=0;b--)

 {

 IOSET0=(1<<b);

 for(i=0;i<120000;i++);

 IOCLR0=(1<<b);

 for(i=0;i<120000;i++);

 }

}

else

{

 IOCLR0=0x000000FF;

}

}

}

St. ANNE’S CET EC6711 EMBEDDED LAB

12 | Prepared By Mr.s. BALABASKER, ASP/ECE

RESULT:

St. ANNE’S CET EC6711 EMBEDDED LAB

13 | Prepared By Mr.s. BALABASKER, ASP/ECE

EXP NO:
INTERFACING OF LCD

DATE

AIM:

To write and execute the program for LCD with ARM7 (LPC2148) processor.

HARDWARE & SOFTWARE TOOLS REQUIRED:

S.No Hardware & Software Requirements Quantity

1 ARM Processor 1

2 USB/FRC Connector 1

3 LCD Module 1

4 Power Supply (5V, DC) 1

5 Proteus ISIS Software 1

PROCEDURE

1. Create a New project, Go to “Project” and close the current project “Close Project”.

2. Next Go to the Project New μvision Project Create New Project Select Device for

Target.

3. Select the data base NXP LPC2148.

4. Add Startup file and Next go to “File” and click “New”.

5. Write a program on the editor window and save as “Main.c”.

6. Add this source file to Group and click on “Build Target” or F7.

7. Create a Hex file from “Project” menu and click on “Rebuild all target Files”.

8. Open Flash magic and select the device LPC2148 in ARM 7 category, COM port

will be COM 3, baud rate 9600, interface None [ISP], Oscillator frequency 12.0 MHz

and click on erase of flash code Rd plot.

9. Next browse the path of hex file and select the file.

10. After selecting ISP mode on the Hardware Kit and click on start then device will

start to program

11. Finally can be see the finished indication and values in SPJ Terminal and Reset

the device into running mode.

St. ANNE’S CET EC6711 EMBEDDED LAB

14 | Prepared By Mr.s. BALABASKER, ASP/ECE

INTERFACING LCD:

CIRCUIT DIAGRAM:

St. ANNE’S CET EC6711 EMBEDDED LAB

15 | Prepared By Mr.s. BALABASKER, ASP/ECE

PROGRAM:

#include <lpc214x.h>

#include <lcd.h>

int main()

 {

 LCD_INIT();

 LCDSTR(0x00000084,"St.ANNES");

 LCDSTR(0x000000C2,"ENGG COLLEGE");

 while(1)

 {

 }

 }

LCD LAYOUT:

80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF

St. ANNE’S CET EC6711 EMBEDDED LAB

16 | Prepared By Mr.s. BALABASKER, ASP/ECE

RESULT:

St. ANNE’S CET EC6711 EMBEDDED LAB

17 | Prepared By Mr.s. BALABASKER, ASP/ECE

EXP NO:
INTERFACING OF MATRIX KEYBOARD

DATE

AIM:

To write and execute the program for Matrix Keyboard with ARM7 (LPC2148)

processor.

HARDWARE & SOFTWARE TOOLS REQUIRED:

S.No Hardware & Software Requirements Quantity

1 ARM Processor 1

2 USB/FRC Connector 1

3 Matrix Keyboard Module 1

4 LCD Module 1

5 Power Supply (5V, DC) 1

6 Proteus ISIS Software 1

PROCEDURE

1. Create a New project, Go to “Project” and close the current project “Close Project”.

2. Next Go to the Project New μvision Project Create New Project Select Device for

Target.

3. Select the data base NXP LPC2148.

4. Add Startup file and Next go to “File” and click “New”.

5. Write a program on the editor window and save as “Main.c”.

6. Add this source file to Group and click on “Build Target” or F7.

7. Create a Hex file from “Project” menu and click on “Rebuild all target Files”.

8. Open Flash magic and select the device LPC2148 in ARM 7 category, COM port

will be COM 3, baud rate 9600, interface None [ISP], Oscillator frequency 12.0 MHz

and click on erase of flash code Rd plot.

9. Next browse the path of hex file and select the file.

10. After selecting ISP mode on the Hardware Kit and click on start then device will

start to program

11. Finally can be see the finished indication and values in SPJ Terminal and Reset

the device into running mode.

St. ANNE’S CET EC6711 EMBEDDED LAB

18 | Prepared By Mr.s. BALABASKER, ASP/ECE

KEYBOARD INTERFACING:

CIRCUIT DIAGRAM:

St. ANNE’S CET EC6711 EMBEDDED LAB

19 | Prepared By Mr.s. BALABASKER, ASP/ECE

PROGRAM:

#include <lpc214x.h>

#include <lcd.h>

#include <keyboard.h>

int main()

 {

 LCD_INIT();

 LCDSTR(0x00000080,"Matrix Keypad");

 LCDSTR(0x000000C0,"Key Pressed: ");

 while(1)

 {

 IO0CLR = CLR;

IO0SET = O1;

delay(10);

if(scan(I1))LCDSTR(0x000000CC,"0"); //K1

if(scan(I2))LCDSTR(0x000000CC,"4"); //K5

if(scan(I3))LCDSTR(0x000000CC,"8"); //K9

if(scan(I4))LCDSTR(0x000000CC,"C"); //K13

IO0CLR = CLR;

IO0SET = O2;

if(scan(I1))LCDSTR(0x000000CC,"1"); //K2

if(scan(I2))LCDSTR(0x000000CC,"5"); //K6

if(scan(I3))LCDSTR(0x000000CC,"9"); //K10

if(scan(I4))LCDSTR(0x000000CC,"D"); //K14

IO0CLR = CLR;

IO0SET = O3;

if(scan(I1))LCDSTR(0x000000CC,"2"); //K3

if(scan(I2))LCDSTR(0x000000CC,"6"); //K7

if(scan(I3))LCDSTR(0x000000CC,"A"); //K11

if(scan(I4))LCDSTR(0x000000CC,"E"); //K15

IO0CLR = CLR;

IO0SET = O4;

if(scan(I1))LCDSTR(0x000000CC,"3"); //K4

if(scan(I2))LCDSTR(0x000000CC,"7"); //K8

if(scan(I3))LCDSTR(0x000000CC,"B"); //K12

if(scan(I4))LCDSTR(0x000000CC,"F"); //K16

 }

 }

St. ANNE’S CET EC6711 EMBEDDED LAB

20 | Prepared By Mr.s. BALABASKER, ASP/ECE

RESULT:

St. ANNE’S CET EC6711 EMBEDDED LAB

21 | Prepared By Mr.s. BALABASKER, ASP/ECE

EXP NO:
INTERFACING OF SERIAL PORT

DATE

AIM:

To write and execute the program for Serial Port with ARM7 (LPC2148) processor.

HARDWARE & SOFTWARE TOOLS REQUIRED:

S.No Hardware & Software Requirements Quantity

1 ARM Processor 1

2 USB/FRC Connector 1

3 LED Module 1

4 Power Supply (5V, DC) 1

5 Proteus ISIS Software 1

PROCEDURE

1. Create a New project, Go to “Project” and close the current project “Close Project”.

2. Next Go to the Project New μvision Project Create New Project Select Device for

Target.

3. Select the data base NXP LPC2148.

4. Add Startup file and Next go to “File” and click “New”.

5. Write a program on the editor window and save as “Main.c”.

6. Add this source file to Group and click on “Build Target” or F7.

7. Create a Hex file from “Project” menu and click on “Rebuild all target Files”.

8. Open Flash magic and select the device LPC2148 in ARM 7 category, COM port

will be COM 3, baud rate 9600, interface None [ISP], Oscillator frequency 12.0 MHz

and click on erase of flash code Rd plot.

9. Next browse the path of hex file and select the file.

10. After selecting ISP mode on the Hardware Kit and click on start then device will

start to program

11. Finally can be see the finished indication and values in SPJ Terminal and Reset

the device into running mode.

St. ANNE’S CET EC6711 EMBEDDED LAB

22 | Prepared By Mr.s. BALABASKER, ASP/ECE

SERIAL PORT:

CIRCUIT DIAGRAM:

St. ANNE’S CET EC6711 EMBEDDED LAB

23 | Prepared By Mr.s. BALABASKER, ASP/ECE

PROGRAM:

#include <lpc214x.h>

#include <delay.h>

#include <usart.h>

int main()

{

usart0_init();

 while(1)

 {

 getchar();

 delay_ms(1000);

 }

}

St. ANNE’S CET EC6711 EMBEDDED LAB

24 | Prepared By Mr.s. BALABASKER, ASP/ECE

SERIAL PORT: (LED CONTROL)

CIRCUIT DIAGRAM:

St. ANNE’S CET EC6711 EMBEDDED LAB

25 | Prepared By Mr.s. BALABASKER, ASP/ECE

PROGRAM:

#include <lpc214x.h>

#include <delay.h>

#include <usart.h>

int key_pressed;

int main()

{

usart0_init();

IODIR0=(1<<7);

IOCLR0=(1<<7);

printf("\n Serial Communication \n");

while(1)

{

initial_state:

 printf("\n Key Pressed Is: ");

 key_pressed=getchar();

 if(key_pressed=='A')

 {

 IOSET0=(1<<7);

 printf("\n LED ON \n");

 delay_ms(100);

 goto initial_state;

 }

 else if(key_pressed=='S')

 {

 IOCLR0=(1<<7);

 printf("\n LED OFF \n");

 delay_ms(100);

 goto initial_state;

 }

 else

 {

 printf("\n INVALID KEY \n");

 delay_ms(100);

 goto initial_state;

 }

}

}

St. ANNE’S CET EC6711 EMBEDDED LAB

26 | Prepared By Mr.s. BALABASKER, ASP/ECE

RESULT:

St. ANNE’S CET EC6711 EMBEDDED LAB

27 | Prepared By Mr.s. BALABASKER, ASP/ECE

EXP NO:
INTERFACING OF STEPPER MOTOR

DATE

AIM:

To write and execute the program for Stepper Motor with ARM7 (LPC2148)

processor.

HARDWARE & SOFTWARE TOOLS REQUIRED:

S.No Hardware & Software Requirements Quantity

1 ARM Processor 1

2 USB/FRC Connector 1

3 Stepper Motor Module 1

4 Power Supply (5V, DC) 1

 Proteus ISIS Software 1

PROCEDURE

1. Create a New project, Go to “Project” and close the current project “Close Project”.

2. Next Go to the Project New μvision Project Create New Project Select Device for

Target.

3. Select the data base NXP LPC2148.

4. Add Startup file and Next go to “File” and click “New”.

5. Write a program on the editor window and save as “Main.c”.

6. Add this source file to Group and click on “Build Target” or F7.

7. Create a Hex file from “Project” menu and click on “Rebuild all target Files”.

8. Open Flash magic and select the device LPC2148 in ARM 7 category, COM port

will be COM 3, baud rate 9600, interface None [ISP], Oscillator frequency 12.0 MHz

and click on erase of flash code Rd plot.

9. Next browse the path of hex file and select the file.

10. After selecting ISP mode on the Hardware Kit and click on start then device will

start to program

11. Finally can be see the finished indication and values in SPJ Terminal and Reset

the device into running mode.

St. ANNE’S CET EC6711 EMBEDDED LAB

28 | Prepared By Mr.s. BALABASKER, ASP/ECE

STEPPER MOTOR: (FORWARD ROTATION)

CIRCUIT DIAGRAM:

St. ANNE’S CET EC6711 EMBEDDED LAB

29 | Prepared By Mr.s. BALABASKER, ASP/ECE

PROGRAM:

#include <lpc214x.h>

#include <delay.h>

int main()

{

IODIR0=(1<<16)|(1<<17)|(1<<18)|(1<<19);

 while(1)

 {

 //FORWARD DIRECTION

 IOCLR0=(1<<16);

 IOCLR0=(1<<17);

 IOSET0=(1<<18);

 IOSET0=(1<<19);

 delay_ms(100);

 IOCLR0=(1<<16);

 IOSET0=(1<<17);

 IOSET0=(1<<18);

 IOCLR0=(1<<19);

 delay_ms(100);

 IOSET0=(1<<16);

 IOSET0=(1<<17);

 IOCLR0=(1<<18);

 IOCLR0=(1<<19);

 delay_ms(100);

 IOSET0=(1<<16);

 IOCLR0=(1<<17);

 IOCLR0=(1<<18);

 IOSET0=(1<<19);

 delay_ms(100);

 }

}

St. ANNE’S CET EC6711 EMBEDDED LAB

30 | Prepared By Mr.s. BALABASKER, ASP/ECE

STEPPER MOTOR: (REVERSE ROTATION)

CIRCUIT DIAGRAM:

St. ANNE’S CET EC6711 EMBEDDED LAB

31 | Prepared By Mr.s. BALABASKER, ASP/ECE

PROGRAM:

#include <lpc214x.h>

#include <delay.h>

int main()

{

IODIR0=(1<<16)|(1<<17)|(1<<18)|(1<<19);

 while(1)

 {

 //REVERSE DIRECTION

 IOSET0=(1<<16);

 IOCLR0=(1<<17);

 IOCLR0=(1<<18);

 IOSET0=(1<<19);

 delay_ms(1000);

 IOSET0=(1<<16);

 IOSET0=(1<<17);

 IOCLR0=(1<<18);

 IOCLR0=(1<<19);

 delay_ms(1000);

 IOCLR0=(1<<16);

 IOSET0=(1<<17);

 IOSET0=(1<<18);

 IOCLR0=(1<<19);

 delay_ms(1000);

 IOCLR0=(1<<16);

 IOCLR0=(1<<17);

 IOSET0=(1<<18);

 IOSET0=(1<<19);

 delay_ms(1000);

 }

}

St. ANNE’S CET EC6711 EMBEDDED LAB

32 | Prepared By Mr.s. BALABASKER, ASP/ECE

RESULT:

St. ANNE’S CET EC6711 EMBEDDED LAB

33 | Prepared By Mr.s. BALABASKER, ASP/ECE

EXP NO:
INTERFACING OF REAL TIME CLOCK

DATE

AIM:

To write and execute the program for Real Time Clock with ARM7 (LPC2148)

processor.

HARDWARE & SOFTWARE TOOLS REQUIRED:

S.No Hardware & Software Requirements Quantity

1 ARM Processor 1

2 USB/FRC Connector 1

3 LCD Module 1

4 Power Supply (5V, DC) 1

PROCEDURE

1. Create a New project, Go to “Project” and close the current project “Close Project”.

2. Next Go to the Project New μvision Project Create New Project Select Device for

Target.

3. Select the data base NXP LPC2148.

4. Add Startup file and Next go to “File” and click “New”.

5. Write a program on the editor window and save as “Main.c”.

6. Add this source file to Group and click on “Build Target” or F7.

7. Create a Hex file from “Project” menu and click on “Rebuild all target Files”.

8. Open Flash magic and select the device LPC2148 in ARM 7 category, COM port

will be COM 3, baud rate 9600, interface None [ISP], Oscillator frequency 12.0 MHz

and click on erase of flash code Rd plot.

9. Next browse the path of hex file and select the file.

10. After selecting ISP mode on the Hardware Kit and click on start then device will

start to program

11. Finally can be see the finished indication and values in SPJ Terminal and Reset

the device into running mode.

St. ANNE’S CET EC6711 EMBEDDED LAB

34 | Prepared By Mr.s. BALABASKER, ASP/ECE

REAL TIME CLOCK:

CIRCUIT DIAGRAM:

St. ANNE’S CET EC6711 EMBEDDED LAB

35 | Prepared By Mr.s. BALABASKER, ASP/ECE

PROGRAM:

#include <lpc21xx.h>

#include <rtc.h>

#include <lcd.h>

int main()

 {

 SETTIME();

 LCD_INIT();

 LCDSTR(0x00000080,"REAL TIME CLOCK ");

 LCDSTR(0x000000C0," ");

 while(1)

 {

 LCD_CMD (0x000000C3);

 LCD_DATA(HOUR/10 + '0');

 LCD_DATA(HOUR%10 + '0');

 LCD_DATA(':') ;

 LCD_DATA(MIN/10 + '0');

 LCD_DATA(MIN%10 + '0');

 LCD_DATA(':') ;

 LCD_DATA(SEC/10 + '0');

 LCD_DATA(SEC%10 + '0');

 }

 }

St. ANNE’S CET EC6711 EMBEDDED LAB

36 | Prepared By Mr.s. BALABASKER, ASP/ECE

RESULT:

St. ANNE’S CET EC6711 EMBEDDED LAB

37 | Prepared By Mr.s. BALABASKER, ASP/ECE

EXP NO: INTERFACING OF ANALOG TO DIGITAL

CONVERTOR DATE

AIM:

To write and execute the program for ADC with ARM7 (LPC2148) processor.

HARDWARE & SOFTWARE TOOLS REQUIRED:

S.No Hardware & Software Requirements Quantity

1 ARM Processor 1

2 USB/FRC Connector 1

3 LCD Module 1

4 Power Supply (5V, DC) 1

5 ADC Module 1

6 Proteus ISIS software 1

PROCEDURE

1. Create a New project, Go to “Project” and close the current project “Close Project”.

2. Next Go to the Project New μvision Project Create New Project Select Device for

Target.

3. Select the data base NXP LPC2148.

4. Add Startup file and Next go to “File” and click “New”.

5. Write a program on the editor window and save as “Main.c”.

6. Add this source file to Group and click on “Build Target” or F7.

7. Create a Hex file from “Project” menu and click on “Rebuild all target Files”.

8. Open Flash magic and select the device LPC2148 in ARM 7 category, COM port

will be COM 3, baud rate 9600, interface None [ISP], Oscillator frequency 12.0 MHz

and click on erase of flash code Rd plot.

9. Next browse the path of hex file and select the file.

10. After selecting ISP mode on the Hardware Kit and click on start then device will

start to program

11. Finally can be see the finished indication and values in SPJ Terminal and Reset

the device into running mode.

St. ANNE’S CET EC6711 EMBEDDED LAB

38 | Prepared By Mr.s. BALABASKER, ASP/ECE

TEMPERATURE SENSOR:

CIRCUIT DIAGRAM:

St. ANNE’S CET EC6711 EMBEDDED LAB

39 | Prepared By Mr.s. BALABASKER, ASP/ECE

PROGRAM:

#include <lpc214x.h>

#include <string.h>

#include <delay.h>

#include <lcd.h>

#include <adc.h>

int main()

 {

 LCD_INIT();

 INIT_ADC();

 LCDSTR(0x00000082,"TEMPERATURE");

 LCDSTR(0x000000C0,"DEGREE C=");

 while(1)

 {

 TEMP = READ_ADC();

 ADC = (1000*(TEMP*(3.901/1024)))-100;

 LCD_CMD(0x000000CA);

 delay_ms(1000);

 CONVERT_ADC1(ADC);

 }

 }

St. ANNE’S CET EC6711 EMBEDDED LAB

40 | Prepared By Mr.s. BALABASKER, ASP/ECE

ANALOG TO DIGITAL CONVERTOR:

CIRCUIT DIAGRAM:

St. ANNE’S CET EC6711 EMBEDDED LAB

41 | Prepared By Mr.s. BALABASKER, ASP/ECE

PROGRAM:

#include <lpc214x.h>

#include <delay.h>

#include <lcd.h>

#include <adc.h>

int main()

 {

 LCD_INIT();

 INIT_ADC();

 LCDSTR(0x00000086,"ADC");

 LCDSTR(0x000000C0,"VOLTAGE =");

 while(1)

 {

 for(count=0;count<10000;count++)

 {

 temp_sum = temp_sum+READ_ADC();

 }

 temp_adv=temp_sum/10000;

 TEMP=temp_adv;

 temp_sum=0;

 ADC = 1000*(TEMP*(3.92/1024));

 LCD_CMD(0x000000CA);

 CONVERT_ADC(ADC);

 }

 }

St. ANNE’S CET EC6711 EMBEDDED LAB

42 | Prepared By Mr.s. BALABASKER, ASP/ECE

RESULT:

St. ANNE’S CET EC6711 EMBEDDED LAB

43 | Prepared By Mr.s. BALABASKER, ASP/ECE

EXP NO: INTERFACING OF DIGITAL TO ANALOG

CONVERTOR DATE

AIM:

To write and execute the program for DAC with ARM7 (LPC2148) processor.

HARDWARE & SOFTWARE TOOLS REQUIRED:

S.No Hardware & Software Requirements Quantity

1 ARM Processor 1

2 USB/FRC Connector 1

3 Power Supply (5V, DC) 1

4 DAC Module 1

5 Proteus ISIS software 1

6 CRO (Or) DSO 1

PROCEDURE

1. Create a New project, Go to “Project” and close the current project “Close Project”.

2. Next Go to the Project New μvision Project Create New Project Select Device for

Target.

3. Select the data base NXP LPC2148.

4. Add Startup file and Next go to “File” and click “New”.

5. Write a program on the editor window and save as “Main.c”.

6. Add this source file to Group and click on “Build Target” or F7.

7. Create a Hex file from “Project” menu and click on “Rebuild all target Files”.

8. Open Flash magic and select the device LPC2148 in ARM 7 category, COM port

will be COM 3, baud rate 9600, interface None [ISP], Oscillator frequency 12.0 MHz

and click on erase of flash code Rd plot.

9. Next browse the path of hex file and select the file.

10. After selecting ISP mode on the Hardware Kit and click on start then device will

start to program

11. Finally can be see the finished indication and values in SPJ Terminal and Reset

the device into running mode.

St. ANNE’S CET EC6711 EMBEDDED LAB

44 | Prepared By Mr.s. BALABASKER, ASP/ECE

ANALOG TO DIGITAL CONVERTOR:

CIRCUIT DIAGRAM:

St. ANNE’S CET EC6711 EMBEDDED LAB

45 | Prepared By Mr.s. BALABASKER, ASP/ECE

PROGRAM:

SIN WAVE:

#include<lpc214x.h>

#include<math.h>

unsigned int i;

int value;

int main()

 {

 PINSEL1 = 0X00080000;

 while(1)

 {

 for(i=0;i<=360;i++)

 {

 value = 512+400*sin(i*0.01744); //sin(2*pi*t/T)

 DACR = value<<6;

 }

 }

 }

St. ANNE’S CET EC6711 EMBEDDED LAB

46 | Prepared By Mr.s. BALABASKER, ASP/ECE

SQUARE WAVE:

#include<LPC214x.H>

int main()

{

unsigned int a,b;

unsigned int delay;

PINSEL1 = 0X00080000;

while(1)

{

a=0x00;

DACR=a<<6;

for(delay=0; delay<120; delay++);

b=0x3FF;

DACR=b<<6;

for(delay=0; delay<120; delay++);

}

}

St. ANNE’S CET EC6711 EMBEDDED LAB

47 | Prepared By Mr.s. BALABASKER, ASP/ECE

TRIANGULAR WAVE:

#include<lpc214x.h>

unsigned int i;

int main()

{

 PINSEL1 = 0X00080000;

 while(1)

{

 for(i=0;i<=1023;i++)

 {

 DACR = i<<6;

 }

 for(i=1023;i>0;i--)

 {

 DACR = i<<6;

 }

 }

 }

St. ANNE’S CET EC6711 EMBEDDED LAB

48 | Prepared By Mr.s. BALABASKER, ASP/ECE

RAMP WAVE:

#include<lpc214x.h>

unsigned int i;

int main(void)

{

PINSEL1 = 0x00080000;

while (1)

 {

for(i = 0 ; i <= 1023; i++)

{

DACR = i << 6 ;

}

 }

}

St. ANNE’S CET EC6711 EMBEDDED LAB

49 | Prepared By Mr.s. BALABASKER, ASP/ECE

DIGITAL TO ANALOG VALUE:

#include<lpc214x.h>

unsigned int i = 0;

void wait(void)

{

unsigned int delay;

for(delay=0;delay<120;delay++);

}

unsigned int

datatable[25]={0x00,0x0F,0x1F,0x2F,0x3F,0x4F,0x5F,0x6F,0x7F,0x8F,0x9F,0xAF,0xBF,0

xCF,0xDF,0xEF,0xFF,0x100,0x150,0x200,0x250,0x300,0x350,0x399};

int main (void)

{

PINSEL1=0x00200000;

while (1)

{

for(i=0;i<25;i++)

{

DACR=(datatable[i]<<6);

wait();

}

}

}

St. ANNE’S CET EC6711 EMBEDDED LAB

50 | Prepared By Mr.s. BALABASKER, ASP/ECE

RESULT:

St. ANNE’S CET EC6711 EMBEDDED LAB

51 | Prepared By Mr.s. BALABASKER, ASP/ECE

EXP NO:
INTERFACING OF PULSE WIDTH MODULATION

DATE

AIM:

To write and execute the program for PWM with ARM7 (LPC2148) processor.

HARDWARE & SOFTWARE TOOLS REQUIRED:

S.No Hardware & Software Requirements Quantity

1 ARM Processor 1

2 USB/FRC Connector 1

3 LED Module 1

4 Power Supply (5V, DC) 1

5 ADC Module 1

6 CRO (Or) DSO 1

PROCEDURE

1. Create a New project, Go to “Project” and close the current project “Close Project”.

2. Next Go to the Project New μvision Project Create New Project Select Device for

Target.

3. Select the data base NXP LPC2148.

4. Add Startup file and Next go to “File” and click “New”.

5. Write a program on the editor window and save as “Main.c”.

6. Add this source file to Group and click on “Build Target” or F7.

7. Create a Hex file from “Project” menu and click on “Rebuild all target Files”.

8. Open Flash magic and select the device LPC2148 in ARM 7 category, COM port

will be COM 3, baud rate 9600, interface None [ISP], Oscillator frequency 12.0 MHz

and click on erase of flash code Rd plot.

9. Next browse the path of hex file and select the file.

10. After selecting ISP mode on the Hardware Kit and click on start then device will

start to program

11. Finally can be see the finished indication and values in SPJ Terminal and Reset

the device into running mode.

St. ANNE’S CET EC6711 EMBEDDED LAB

52 | Prepared By Mr.s. BALABASKER, ASP/ECE

PULSE WIDTH MODULATION:

CIRCUIT DIAGRAM:

St. ANNE’S CET EC6711 EMBEDDED LAB

53 | Prepared By Mr.s. BALABASKER, ASP/ECE

PROGRAM:

#include<LPC214x.h>

#include<pwm.h>

int main()

 {

 PWM_INIT();

 INIT_ADC();

 while(1)

 {

 PWM = READ_ADC();

 if(PWM>0x000003FF) PWM=0x000003FF;

 PWMMR2 = PWM;

 PWMTCR = 0X00000000;

 PWMTCR = 0X00000009;

 }

 }

St. ANNE’S CET EC6711 EMBEDDED LAB

54 | Prepared By Mr.s. BALABASKER, ASP/ECE

RESULT:

St. ANNE’S CET EC6711 EMBEDDED LAB

55 | Prepared By Mr.s. BALABASKER, ASP/ECE

EXP NO:
INTERFACING INTERRUPT

DATE

AIM:

To write and execute the program for Interrupt with ARM7 (LPC2148) processor.

HARDWARE & SOFTWARE TOOLS REQUIRED:

S.No Hardware & Software Requirements Quantity

1 ARM Processor 1

2 USB/FRC Connector 1

3 LED Module 1

4 Power Supply (5V, DC) 1

PROCEDURE

1. Create a New project, Go to “Project” and close the current project “Close Project”.

2. Next Go to the Project New μvision Project Create New Project Select Device for

Target.

3. Select the data base NXP LPC2148.

4. Add Startup file and Next go to “File” and click “New”.

5. Write a program on the editor window and save as “Main.c”.

6. Add this source file to Group and click on “Build Target” or F7.

7. Create a Hex file from “Project” menu and click on “Rebuild all target Files”.

8. Open Flash magic and select the device LPC2148 in ARM 7 category, COM port

will be COM 3, baud rate 9600, interface None [ISP], Oscillator frequency 12.0 MHz

and click on erase of flash code Rd plot.

9. Next browse the path of hex file and select the file.

10. After selecting ISP mode on the Hardware Kit and click on start then device will

start to program

11. Finally can be see the finished indication and values in SPJ Terminal and Reset

the device into running mode.

St. ANNE’S CET EC6711 EMBEDDED LAB

56 | Prepared By Mr.s. BALABASKER, ASP/ECE

INTERRUPT:

CIRCUIT DIAGRAM:

St. ANNE’S CET EC6711 EMBEDDED LAB

57 | Prepared By Mr.s. BALABASKER, ASP/ECE

PROGRAM:

#include<lpc21xx.h>

#include<interrupt.h>

#include<delay.h>

unsigned int b;

int main(void)

{

 init_ext();

 IODIR0=0x000000FF;

 while(1)

{

for(b=0;b<8;b++)

 {

 IOSET0=(1<<b);

 delay_ms(100);

 IOCLR0=(1<<b);

 delay_ms(100);

 }

}

 }

St. ANNE’S CET EC6711 EMBEDDED LAB

58 | Prepared By Mr.s. BALABASKER, ASP/ECE

RESULT:

St. ANNE’S CET EC6711 EMBEDDED LAB

59 | Prepared By Mr.s. BALABASKER, ASP/ECE

EXP NO:
INTERFACING EEPROM

DATE

AIM:

To write and execute the program for EEPROM with ARM7 (LPC2148) processor.

HARDWARE & SOFTWARE TOOLS REQUIRED:

S.No Hardware & Software Requirements Quantity

1 ARM Processor 1

2 USB/FRC Connector 1

3 LCD Module 1

4 EEPROM Module 1

5 Power Supply (5V, DC) 1

6 Matrix Keypad Module 1

PROCEDURE

1. Create a New project, Go to “Project” and close the current project “Close Project”.

2. Next Go to the Project New μvision Project Create New Project Select Device for

Target.

3. Select the data base NXP LPC2148.

4. Add Startup file and Next go to “File” and click “New”.

5. Write a program on the editor window and save as “Main.c”.

6. Add this source file to Group and click on “Build Target” or F7.

7. Create a Hex file from “Project” menu and click on “Rebuild all target Files”.

8. Open Flash magic and select the device LPC2148 in ARM 7 category, COM port

will be COM 3, baud rate 9600, interface None [ISP], Oscillator frequency 12.0 MHz

and click on erase of flash code Rd plot.

9. Next browse the path of hex file and select the file.

10. After selecting ISP mode on the Hardware Kit and click on start then device will

start to program

11. Finally can be see the finished indication and values in SPJ Terminal and Reset

the device into running mode.

St. ANNE’S CET EC6711 EMBEDDED LAB

60 | Prepared By Mr.s. BALABASKER, ASP/ECE

EEPROM:

CIRCUIT DIAGRAM:

St. ANNE’S CET EC6711 EMBEDDED LAB

61 | Prepared By Mr.s. BALABASKER, ASP/ECE

PROGRAM:

#include <lpc21xx.h>

#include <string.h>

#include <lcd.h>

#include <eeprom.h>

#include <keyboard.h>

char buf[16];

unsigned char cnt=0;

int main()

 {

 LCD_INIT();

 LCDSTR(0x00000082,"EEPROM TEST ");

 LCDSTR(0x000000C0,"COMMAND ENTER: 1");

 cnt=1;

 while(1)

 {

 IO0CLR = CLR;

 IO0SET = O1;

 delay(10);

 if(scan(I1))

 {

 LCDSTR(0x000000C0,"COMMAND ENTER: 1");

 cnt=1;

 }

 if(scan(I2))

 {

 if(cnt==1)

 {

 eeprom_write(0,"HI PANRUTI ");

 LCDSTR(0x000000C0,"Writting Message");

 delay(120000);

 }

 if(cnt==2)

 {

 eeprom_write(0,"HI CUDDALORE ");

 LCDSTR(0x000000C0,"Writting Message");

 delay(120000);

 }

 if(cnt==3)

 {

St. ANNE’S CET EC6711 EMBEDDED LAB

62 | Prepared By Mr.s. BALABASKER, ASP/ECE

 eeprom_write(0,"HI NEYVELI ");

 LCDSTR(0x000000C0,"Writting Message");

 delay(120000);

 }

 if(cnt==4)

 {

 eeprom_write(0,"HI PONDICHERRY ");

 LCDSTR(0x000000C0,"Writting Message");

 delay(120000);

 }

 }

 IO0CLR = CLR;

 IO0SET = O2;

 if(scan(I1))

 {

 LCDSTR(0x000000C0,"COMMAND ENTER: 2");

 cnt=2;

 }

 if(scan(I2))

 {

 eeprom_read(0,16, buf);

 LCDSTR(0x000000C0,"Reading Message ");

 DELAY(5000);

 LCDSTR(0xC0,buf);

 }

 IO0CLR = CLR;

 IO0SET = O3;

 if(scan(I1))

 {

 LCDSTR(0x000000C0,"COMMAND ENTER: 3");

 cnt=3;

 }

 if(scan(I2))

 {

 eeprom_write(0 , "Nothing Here ");

 LCDSTR(0x000000C0,"Erasing Message ");

 delay(120000);

 cnt=5;

 }

 IO0CLR = CLR;

 IO0SET = O4;

 if(scan(I1))

 {

 LCDSTR(0x000000C0,"COMMAND ENTER: 4");

St. ANNE’S CET EC6711 EMBEDDED LAB

63 | Prepared By Mr.s. BALABASKER, ASP/ECE

 cnt=4;

 }

 }

 }

St. ANNE’S CET EC6711 EMBEDDED LAB

64 | Prepared By Mr.s. BALABASKER, ASP/ECE

RESULT:

St. ANNE’S CET EC6711 EMBEDDED LAB

65 | Prepared By Mr.s. BALABASKER, ASP/ECE

EXP NO:
INTERFACING ZIGBEE PROTOCOL WITH ARM

DATE

AIM:

To write and execute the program for Zigbee Protocol with ARM7 (LPC2148)

processor.

HARDWARE & SOFTWARE TOOLS REQUIRED:

S.No Hardware & Software Requirements Quantity

1 ARM Processor 1

2 USB/FRC Connector 1

3 Zigbee Module(TX, RX) 2

4 Power Supply (5V, DC) 1

PROCEDURE

1. Create a New project, Go to “Project” and close the current project “Close Project”.

2. Next Go to the Project New μvision Project Create New Project Select Device for

Target.

3. Select the data base NXP LPC2148.

4. Add Startup file and Next go to “File” and click “New”.

5. Write a program on the editor window and save as “Main.c”.

6. Add this source file to Group and click on “Build Target” or F7.

7. Create a Hex file from “Project” menu and click on “Rebuild all target Files”.

8. Open Flash magic and select the device LPC2148 in ARM 7 category, COM port

will be COM 3, baud rate 9600, interface None [ISP], Oscillator frequency 12.0 MHz

and click on erase of flash code Rd plot.

9. Next browse the path of hex file and select the file.

10. After selecting ISP mode on the Hardware Kit and click on start then device will

start to program

11. Finally can be see the finished indication and values in SPJ Terminal and Reset

the device into running mode.

St. ANNE’S CET EC6711 EMBEDDED LAB

66 | Prepared By Mr.s. BALABASKER, ASP/ECE

ZIGBEE TRANSMITTER:

CIRCUIT DIAGRAM:

LPC2148

ZIGBEE

TX

St. ANNE’S CET EC6711 EMBEDDED LAB

67 | Prepared By Mr.s. BALABASKER, ASP/ECE

PROGRAM:

#include <lpc214x.h>

#include <delay.h>

#include <usart.h>

int key_pressed;

int main()

{

usart0_init();

 while(1)

 {

 delay_ms(100);

 sendchar('A');

 delay_ms(1000);

 sendchar('B');

 delay_ms(1000);

 }

}

St. ANNE’S CET EC6711 EMBEDDED LAB

68 | Prepared By Mr.s. BALABASKER, ASP/ECE

ZIGBEE RECEIVER:

CIRCUIT DIAGRAM:

LPC2148

ZIGBEE

RX

PC

TERMINAL

WINDOW

St. ANNE’S CET EC6711 EMBEDDED LAB

69 | Prepared By Mr.s. BALABASKER, ASP/ECE

PROGRAM:

#include <lpc214x.h>

#include <delay.h>

#include <usart.h>

int key_pressed;

int main()

{

usart0_init();

printf("\n Serial Communication \n");

 while(1)

 {

 printf("\n Value Transmitted Is: ");

 key_pressed=getchar();

 }

}

St. ANNE’S CET EC6711 EMBEDDED LAB

70 | Prepared By Mr.s. BALABASKER, ASP/ECE

RESULT:

St. ANNE’S CET EC6711 EMBEDDED LAB

71 | Prepared By Mr.s. BALABASKER, ASP/ECE

EXP NO:
MAILBOX

DATE

AIM:

To write and execute the program for Mailbox with ARM7 (LPC2148) processor.

HARDWARE & SOFTWARE TOOLS REQUIRED:

S.No Hardware & Software Requirements Quantity

1 ARM Processor 1

2 USB/FRC Connector 1

3 Power Supply (5V, DC) 1

PROCEDURE

1. Create a New project, Go to “Project” and close the current project “Close Project”.

2. Next Go to the Project New μvision Project Create New Project Select Device for

Target.

3. Select the data base NXP LPC2148.

4. Add Startup file and Next go to “File” and click “New”.

5. Write a program on the editor window and save as “Main.c”.

6. Add this source file to Group and click on “Build Target” or F7.

7. Create a Hex file from “Project” menu and click on “Rebuild all target Files”.

8. Open Flash magic and select the device LPC2148 in ARM 7 category, COM port

will be COM 3, baud rate 9600, interface None [ISP], Oscillator frequency 12.0 MHz

and click on erase of flash code Rd plot.

9. Next browse the path of hex file and select the file.

10. After selecting ISP mode on the Hardware Kit and click on start then device will

start to program

11. Finally can be see the finished indication and values in SPJ Terminal and Reset

the device into running mode.

St. ANNE’S CET EC6711 EMBEDDED LAB

72 | Prepared By Mr.s. BALABASKER, ASP/ECE

MAILBOX:

BLOCK DIAGRAM:

LPC2148

TERMINAL

MODE

St. ANNE’S CET EC6711 EMBEDDED LAB

73 | Prepared By Mr.s. BALABASKER, ASP/ECE

PROGRAM:

#include <RTL.h>

#include <LPC21xx.H>

#include <stdio.h>

OS_TID tsk1;

OS_TID tsk2;

typedef struct

 {

 float voltage;

 float current;

 U32 counter;

 }T_MEAS;

os_mbx_declare (MsgBox,16);

_declare_box (mpool,sizeof(T_MEAS),16);

__task void send_task (void);

__task void rec_task (void);

void init_serial ()

 {

 PINSEL0 = PINSEL0 | 0X00000005;

 U0LCR = 0X83;

 U0DLL = 0Xbb;

 U0DLM = 0X00;

 U0LCR = 0X03;

 }

__task void send_task (void)

 {

 T_MEAS *mptr;

 tsk1 = os_tsk_self ();

 tsk2 = os_tsk_create (rec_task, 0);

 os_mbx_init (MsgBox, sizeof(MsgBox));

 os_dly_wait (5);

 mptr = _alloc_box (mpool);

 mptr->voltage = 100.72;

 mptr->current = 17.54;

 mptr->counter = 120786;

 os_mbx_send (MsgBox, mptr, 0xffff);

 IOSET0 = 0x00010000;

 os_dly_wait (100);

St. ANNE’S CET EC6711 EMBEDDED LAB

74 | Prepared By Mr.s. BALABASKER, ASP/ECE

 mptr = _alloc_box (mpool);

 mptr->voltage = 227.23;

 mptr->current = 12.41;

 mptr->counter = 170823;

 os_mbx_send (MsgBox, mptr, 0xffff);

 os_tsk_pass ();

 IOSET0 = 0x00020000;

 os_dly_wait (100);

 mptr = _alloc_box (mpool);

 mptr->voltage = 229.44;

 mptr->current = 11.89;

 mptr->counter = 237178;

 os_mbx_send (MsgBox, mptr, 0xffff);

 IOSET0 = 0x00040000;

 os_dly_wait (100);

 os_tsk_delete_self ();

}

__task void rec_task (void)

 {

 T_MEAS *rptr;

 for (;;)

 {

 os_mbx_wait (MsgBox, (void **)&rptr, 0xffff);

 printf ("\nVoltage: %.2f V\n",rptr->voltage);

 printf ("Current: %.2f A\n",rptr->current);

 printf ("Number of cycles: %d\n",rptr->counter);

 _free_box (mpool, rptr);

 }

 }

int main (void)

 {

 IODIR0 = 0x00FF0000;

 IOCLR0 = 0x00FF0000;

 init_serial ();

 _init_box (mpool, sizeof(mpool),sizeof(T_MEAS));

 os_sys_init (send_task);

 }

St. ANNE’S CET EC6711 EMBEDDED LAB

75 | Prepared By Mr.s. BALABASKER, ASP/ECE

St. ANNE’S CET EC6711 EMBEDDED LAB

76 | Prepared By Mr.s. BALABASKER, ASP/ECE

RESULT:

St. ANNE’S CET EC6711 EMBEDDED LAB

77 | Prepared By Mr.s. BALABASKER, ASP/ECE

EXP NO:
PERFORMANCE CHARACTERISTICS OF ARM

DATE

AIM:

To write and execute the program for Interrupt Performance Characteristics of

ARM with ARM7 (LPC2148) processor.

HARDWARE & SOFTWARE TOOLS REQUIRED:

S.No Hardware & Software Requirements Quantity

1 ARM Processor 1

2 USB/FRC Connector 1

3 Power Supply (5V, DC) 1

PROCEDURE

1. Create a New project, Go to “Project” and close the current project “Close Project”.

2. Next Go to the Project New μvision Project Create New Project Select Device for

Target.

3. Select the data base NXP LPC2148.

4. Add Startup file and Next go to “File” and click “New”.

5. Write a program on the editor window and save as “Main.c”.

6. Add this source file to Group and click on “Build Target” or F7.

7. Create a Hex file from “Project” menu and click on “Rebuild all target Files”.

8. Open Flash magic and select the device LPC2148 in ARM 7 category, COM port

will be COM 3, baud rate 9600, interface None [ISP], Oscillator frequency 12.0 MHz

and click on erase of flash code Rd plot.

9. Next browse the path of hex file and select the file.

10. After selecting ISP mode on the Hardware Kit and click on start then device will

start to program

11. Finally can be see the finished indication and values in SPJ Terminal and Reset

the device into running mode.

St. ANNE’S CET EC6711 EMBEDDED LAB

78 | Prepared By Mr.s. BALABASKER, ASP/ECE

PERFORMANCE CHARACTERISTICS OF ARM:

BLOCK DIAGRAM:

St. ANNE’S CET EC6711 EMBEDDED LAB

79 | Prepared By Mr.s. BALABASKER, ASP/ECE

PROGRAM:

#include <lpc214x.h>

#include <string.h>

#include <lcd.h>

#include <pll.h>

void CONVERT_DATA(unsigned int);

void SEC_DELAY(void);

unsigned int count=0;

void ext_interrupt(void)__irq

 {

 EXTINT = 0X02; /* Clear interrupt flag */

 count++;

 VICVectAddr = 0x00000000; /* Acknowledge Interrupt */

 }

void init_ext(void)

 {

 PINSEL0 |= 0X20000000; /* enable EXT1 */

 EXTMODE = 0X02; /* edge sensitive */

 EXTPOLAR = 0X02; /* on rising edge */

 VICVectAddr0 =(unsigned int)ext_interrupt; /* Set Interrupt Vector in 0 */

 VICVectCntl0 = 0x0000002F; /* Use it for EXT1 Interrupt */

 VICIntEnable = 0x00008000; /* enable EXT1 INTERRUPT */

 }

int main()

 {

 init_ext();

 LCD_INIT();

 LCDSTR(0x00000080,"Counter: ");

 LCDSTR(0x000000C0,"ARM PERFORMANCE");

 while(1)

 {

 SEC_DELAY();

 LCD_CMD(0x00000088);

 CONVERT_DATA(count);

 count=0;

 }

St. ANNE’S CET EC6711 EMBEDDED LAB

80 | Prepared By Mr.s. BALABASKER, ASP/ECE

 }

void CONVERT_DATA(unsigned int DATA)

 {

 LCD_DATA((DATA % 100000000/10000000) | 0x30);

 LCD_DATA((DATA % 10000000/1000000) | 0x30);

 LCD_DATA((DATA % 1000000/100000) | 0x30);

 LCD_DATA((DATA % 100000/10000) | 0x30);

 LCD_DATA((DATA % 10000/1000) | 0x30);

 LCD_DATA((DATA % 1000/100) | 0x30);

 LCD_DATA((DATA % 100/10) | 0x30);

 LCD_DATA((DATA % 10/1) | 0x30);

 return;

 }

void SEC_DELAY()

{

 T0PR = 0x0000270F; //0x0000270F

 T0MR0 = 0x00000BA1 ; //0x000004B0

 T0TCR = 0x01;

 while(T0TC != T0MR0);

 T0MCR = 0x00000002;

 T0TCR = 0x02;

}

St. ANNE’S CET EC6711 EMBEDDED LAB

81 | Prepared By Mr.s. BALABASKER, ASP/ECE

St. ANNE’S CET EC6711 EMBEDDED LAB

82 | Prepared By Mr.s. BALABASKER, ASP/ECE

RESULT:

HEADER FILES

lcd.h:

extern void DELAY(unsigned int);

extern void LCDSTR(unsigned char ADDRESS,char *MSG);

extern void LCD_DATA(unsigned char);

extern void LCD_CD(unsigned int);

extern void LCD_INIT(void);

unsigned int E = 0x00000800; // P1.11 ENABLE LCD

unsigned int RW = 0x00000400; // P1.10 READ/WRITE LCD

unsigned int RS = 0x00000200; // P1.09 REGISTER SELECT LCD

void DELAY(unsigned int VALUE)

 {

 unsigned int i,j;

 for(i=0;i<VALUE;i++)

 {

 for(j=1;j<1200;j++);

 }

 }

void LCD_DATA(unsigned char VALUE)

 {

 unsigned int b,TEMP;

 TEMP = VALUE;

 for(b=0;b<16;b++)

 {

 TEMP = TEMP<<1;

 }

 IO1SET = TEMP;

 IO1CLR = ~TEMP;

 IO0CLR = RW;

 IO0SET = RS;

 IO0SET = E;

 DELAY(50);

 IO0CLR = E;

 }

void LCD_CMD(unsigned int LCMD)

 {

 unsigned int b;

 for(b=0;b<16;b++)

 {

 LCMD = LCMD<<1;

 }

 IO1SET = LCMD;

 IO1CLR = ~LCMD;

 IO0CLR = RW;

 IO0CLR = RS;

 IO0SET = E;

 DELAY(50);

 IO0CLR = E;

 }

void LCDSTR(unsigned char ADDRESS,char *MSG)

 {

 unsigned char COUNT,LENGTH;

 LCD_CMD(ADDRESS);

 LENGTH = strlen(MSG);

 for(COUNT=0;COUNT<LENGTH;COUNT++)

 {

 LCD_DATA(*MSG);

 MSG++;

 }

 }

void LCD_INIT()

 {

 //GPIO

 IO0DIR =0x00F00E00; // P0.9 ----- P0.11 LCD DATA

 IO1DIR =0X00FF0000; // P1.16 --- P1.23 LCD CONTROL

 //LCD INITIALIZATION

 LCD_CMD(0x00000038); //function set: 8-bit, 2 line, 5x7 dots

 LCD_CMD(0x0000000C); //display on, cursor off

 LCD_CMD(0x00000001); //clear display screen

 LCD_CMD(0x00000006); //entry mode

 }

keyboard.h:

#define O1 0X00E00000

#define O2 0X00D00000

#define O3 0X00B00000

#define O4 0X00700000

#define I1 0x000E0000

#define I2 0x000D0000

#define I3 0x000B0000

#define I4 0x00070000

#define CLR 0x00F00000

extern char scan (int);

extern void delay1(int);

char scan(int keystatus) /* scanning a a key */

 {

 while((IO0PIN & 0X000F0000)==keystatus)

 {

 delay1(50);

 if((IO0PIN & 0X000F0000)== 0X000F0000)return(1);

 }

 return(0) ;

 }

void delay1(int n) /* generates one milisecond delay */

 {

 int i,j;

 for (i=1; i<=n; i++)

 for(j=0; j<=10000; j++);

 }

delay.h:

#ifndef __delay_h

#define __delay_h

void delay_ms(unsigned int);

void delay_us(unsigned int);

void delay_ms(unsigned long delay_ms_var1)

{

unsigned int dummy_ms_1;

unsigned int dummy_ms_2;

 while(delay_ms_var1>0)

 {

 for(dummy_ms_2=0;dummy_ms_2<7100;dummy_ms_2++)

 {

 dummy_ms_2++;

 }

 delay_ms_var1--;

 }

}

void delay_us(unsigned long delay_us_var1)

{

unsigned int dummy_us_1;

 for(dummy_us_1=0;dummy_us_1<delay_us_var1;dummy_us_1++)

 {

 dummy_us_1+=3;

 }

}

#endif

eeprom.h:

#define DEV_WR_STAT 0X18

#define DEV_RD_STAT 0X40

#define LOC_WR_STAT 0x28

#define DATA_WR_STAT 0x28

#define DEV_WRITE 0XA0

#define DEV_READ 0XA1

extern void delay(unsigned int del);

extern void i2c_init(void);

extern void i2c_start(void);

extern void i2c_write(char dat , char status);

extern void i2c_stop(void);

extern char i2c_read(void);

extern void eeprom_read(char loc,char loc_count , char *ptr);

extern void eeprom_write(char loc , char *ptr);

unsigned char I2Cdata;

void delay(unsigned int del)

 {

 while(del-- > 0);

 }

void i2c_init(void)

 {

 PINSEL0 = 0X50;

 I2CONCLR = 0X0000002C; /* clears AA,I2C interrupt flag,START flag bit*/

 I2CONSET = 0X00000044; /* enable i2c */

 I2SCLL = 0xFFFF; /* bitrate = 400kHz */ // 70,5

 I2SCLH = 0xFFFF;;

 }

void i2c_start()

 {

 I2CONSET |= 0x00000020; /* Set STA flag */

 while (I2STAT != 0x00000008); /* Wait for Status Set - 0x08 */

 }

void i2c_write(char dat , char status)

 {

 I2DAT = dat;

 I2CONSET = 0X00000004;

 I2CONCLR = 0X00000028;

 while (I2STAT != status); /* Wait for Status Set */

 }

void i2c_stop(void)

 {

 I2CONSET |= 0x00000014;

 I2CONCLR = 0x00000008; /* Stop I2C and Start Bit */

 }

char i2c_read(void)

 {

 I2CONSET = 0X00000004;

 I2CONCLR = 0X00000028;

 while (I2STAT != 0x00000050); /* Wait for Status Set - 0x50 */

 return(I2DAT);

 }

void eeprom_read(char loc,char loc_count , char *ptr)

 {

 i2c_init();

 i2c_start();

 i2c_write(DEV_WRITE ,DEV_WR_STAT);

 i2c_write(loc , LOC_WR_STAT);

 i2c_stop();

 delay(5000);

 i2c_start();

 i2c_write(DEV_READ ,DEV_RD_STAT);

 while(loc_count-- > 0)

 {

 *ptr = i2c_read();

 ptr++;

 }

 i2c_stop();

 }

void eeprom_write(char loc , char *ptr)

 {

 i2c_init();

 i2c_start();

 i2c_write(DEV_WRITE ,DEV_WR_STAT);

 i2c_write(loc , LOC_WR_STAT);

 while(*ptr != '\0')

 { i2c_write(*ptr , LOC_WR_STAT);

 ptr++; }

 i2c_stop();

 }

rtc.h:

extern void SETTIME(void);

void SETTIME(void)

{

 CCR = 0x02;

 HOUR = 12;

 MIN = 10;

 SEC = 20;

 CCR = 0x11;

}

adc.h:

extern void INIT_ADC(void);

extern void PwmInit(void);

extern int READ_ADC(void);

extern void CONVERT_ADC(unsigned int);

unsigned int TEMP=0,ADC=0;

unsigned long temp_adv=0,temp_sum=0;

unsigned int count=0;

unsigned int PWM=0;

void INIT_ADC()

 {

 PINSEL1 |= 0x01000000;

 AD0CR = 0x00200602;

 }

void PwmInit()

{

 PINSEL0 = 0X00008000; // Enable PWM2 -- P0.7

 PWMLER = 0X00000004; // Set latch register

 PWMPR = 0X00000000; // Prescale 0

 PWMMR0 = 0X000003FF; // 120 KHz Frequency

 PWMMR2 = 0X000003FF; // 50% Duty Cycle 7C 0,62,124,186

 PWMMCR = 0X00000002; // Set only Match0 control

 PWMPCR = 0X00000400;

 PWMTCR = 0X00000009;

}

int READ_ADC()

 {

 int VAL;

 AD0CR |= 0x01000000; /* Start A/D Conversion */

 do

 {

 VAL = AD0DR1; /* Read A/D Data Register */

 }

 while (!(VAL & 0x80000000)); /* Wait for end of A/D Conversion */

 AD0CR &= ~0x01000000; /* Stop A/D Conversion */

 VAL >>=6;

 VAL = VAL & 0x3FF;

 return(VAL);

 }

void CONVERT_ADC(unsigned int ADC)

 {

 unsigned int CNT1,CNT2,CNT3,CNT4;

 unsigned char DATA1,DATA2,DATA3,DATA4;

 CNT1 = ADC % 10000/1000;

 CNT2 = ADC % 1000/100;

 CNT3 = ADC % 100/10;

 CNT4 = ADC % 10/1;

 DATA1 = CNT1 | 0x30;

 DATA2 = CNT2 | 0x30;

 DATA3 = CNT3 | 0x30;

 DATA4 = CNT4 | 0x30;

 LCD_DATA(DATA1);

 LCD_DATA('.');

 LCD_DATA(DATA2);

 LCD_DATA(DATA3);

 LCD_DATA(DATA4);

 return;

 }

void CONVERT_ADC1(unsigned int ADC)

 {

 unsigned int CNT1,CNT2,CNT3,CNT4;

 unsigned char DATA1,DATA2,DATA3,DATA4;

 CNT1 = ADC % 10000/1000;

 CNT2 = ADC % 1000/100;

 CNT3 = ADC % 100/10;

 CNT4 = ADC % 10/1;

 DATA1 = CNT1 | 0x30;

 DATA2 = CNT2 | 0x30;

 DATA3 = CNT3 | 0x30;

 DATA4 = CNT4 | 0x30;

 LCD_DATA(DATA1);

 LCD_DATA(DATA2);

 LCD_DATA(DATA3);

 LCD_DATA('.');

 LCD_DATA(DATA4);

 return;

 }

interrupt.h:

extern void ext_interrupt(void)__irq;

extern void init_ext(void);

extern void DELAY(unsigned long VALUE);

void ext_interrupt(void)__irq

 {

 EXTINT = 0X02; /* Clear interrupt flag */

 DELAY(5000000);

 VICVectAddr = 0x00000000; /* Acknowledge Interrupt */

 }

void init_ext(void)

 {

 PINSEL0 |= 0X20000000; /* enable EXT1 */

 EXTMODE = 0X02; /* edge sensitive */

 EXTPOLAR = 0X02; /* on rising edge */

 VICVectAddr0 =(unsigned int)ext_interrupt; /* Set Interrupt Vector in 0 */

 VICVectCntl0 = 0x0000002F; /* Use it for EXT1 Interrupt */

 VICIntEnable = 0x00008000; /* enable EXT1 INTERRUPT */

 }

void DELAY(unsigned long VALUE)

{

 while(VALUE>0)

 {

 VALUE--;

 }

}

pwm.h:

extern void INIT_ADC(void);

extern void PWM_INIT(void);

extern int READ_ADC(void);

unsigned int PWM=0;

void INIT_ADC()

 {

 PINSEL1 |= 0x01000000;

 AD0CR = 0x00200602;

 }

void PWM_INIT()

{

 PINSEL0 = 0X00008000; // Enable PWM2 -- P0.7

 PWMLER = 0X00000004; // Set latch register

 PWMPR = 0X00000000; // Prescale 0

 PWMMR0 = 0X000003FF; // 120 KHz Frequency

 PWMMR2 = 0X000003FF; // 50% Duty Cycle 7C 0,62,124,186

 PWMMCR = 0X00000002; // Set only Match0 control

 PWMPCR = 0X00000400;

 PWMTCR = 0X00000009;

}

int READ_ADC()

 {

 int VAL;

 AD0CR |= 0x01000000; /* Start A/D Conversion */

 do

 {

 VAL = AD0DR1; /* Read A/D Data Register */

 }

 while (!(VAL & 0x80000000)); /* Wait for end of A/D Conversion */

 AD0CR &= ~0x01000000; /* Stop A/D Conversion */

 VAL >>=6;

 VAL = VAL & 0x3FF;

 return(VAL);

 }

usart.h:

#include <stdio.h>

#include <time.h>

#include <rt_misc.h>

void usart0_init(void);

void usart1_init(void);

short check_usart(void);

//int getchar_ (void);

int getchar_attempt (unsigned int);

void usart_flush ();

short usart_print;

extern int sendchar(int ch); /* in Serial.c */

extern int getkey(void); /* in Serial.c */

extern long timeval; /* in Time.c */

struct __FILE { int handle; /* Add whatever you need here */ };

FILE __stdout;

FILE __stdin;

int fputc(int ch, FILE *f) {

 return (sendchar(ch));

}

int fgetc(FILE *f) {

 return (sendchar(getkey()));

}

int ferror(FILE *f) {

 /* Your implementation of ferror */

 return EOF;

}

void _ttywrch(int ch) {

 sendchar (ch);

}

void _sys_exit(int return_code) {

 while (1); /* endless loop */

}

void usart0_init(void)

{

 VPBDIV = 0x02; // Divide Pclk by two

 PINSEL0= (PINSEL0 & (~(0x0F<<0)))|(5<<0); /*Select the AD0.3 of P0.30*/

 U0LCR &= 0xFC;//

 U0FCR=0x07; //enable and clear FIFOs

 U0LCR=0x83; //8-N-1, enable divisors

 U0DLL=0xc3; //9600 baud (9615)

 U0DLM=0x00;

 U0LCR=0x03; //8-N-1, disable divisors

}

void usart1_init(void)

{

 PINSEL0= (PINSEL0 & (~(0x0F<<16)))|(5<<16); /*Select the AD0.3 of P0.30*/

 U1LCR &= 0xFC;//

 U1FCR=0x07; //enable and clear FIFOs

 U1LCR=0x83; //8-N-1, enable divisors

 U1DLL=0xc3; //9600 baud (9615)

 U1DLM=0x00;

 U1LCR=0x03; //8-N-1, disable divisors

}

#define CR 0x0D

/* implementation of putchar (also used by printf function to output data) */

int sendchar (int ch)

{ /* Write character to Serial Port */

 if(usart_print==0)

 {

 if (ch == '\n')

 {

 while (!(U0LSR & 0x20));

 U0THR = CR; /* output CR */

 }

 while (!(U0LSR & 0x20));

 return (U0THR = ch);

 }

 else

 {

 if (ch == '\n')

 {

 while (!(U1LSR & 0x20));

 U1THR = CR; /* output CR */

 }

 while (!(U1LSR & 0x20));

 return (U1THR = ch);

 }

}

int getchar_attempt (unsigned int time)

{ /* Read character from Serial Port */

 if(usart_print==0)

 {

 while (!(U0LSR & 0x01))

 {

 delay_ms(1);

 time--;

 }

 return (U0RBR);

 }

 else

 {

 while (!(U1LSR & 0x01))

 {

 delay_ms(1);

 time--;

 }

 return (U1RBR);

 }

}

void usart_flush ()

{ /* Read character from Serial Port */

 if(usart_print==0)

 {

 while ((U0LSR & 0x01))

 {

 getchar();

 }

 return;

 }

 else

 {

 while ((U1LSR & 0x01))

 {

 getchar();

 }

 return;

 }

}

int getkey (void)

{ /* Read character from Serial Port */

//char rtn_temp;

 if(usart_print==0)

 {

 while (!(U0LSR & 0x01));

 return(U0RBR);

 }

 else

 {

 while (!(U1LSR & 0x01));

 return(U1RBR);

 }

 //if((rtn_temp==10)||(rtn_temp==13))

 //{

 //usart_flush();

 //}

//return (rtn_temp);

}

short check_usart(void)

{

 if (U0LSR & 0x01)

 {

 return 0;

 }

 if (U1LSR & 0x01)

 {

 return 1;

 }

 return 255;

}

pll.h:

extern void INIT_PLL(void);

void INIT_PLL()

{

 PLL0CFG=0x00000024; // TO GENERATE 60 MHZ CCLK

 PLL0CON=0x00000001;

 PLL0FEED=0x000000AA; // UPDATE THE PLL REGISTER

 PLL0FEED=0x00000055;

 while(!(PLL0STAT & 0x00000400)); // CHECK WHETHRT THE CCLK IS GENERATED EXAXT VALUE

 PLL0CON=0x00000003; // CONNECT PLL

 PLL0FEED=0x000000AA; // UPDATE THE PLL REGISTER

 PLL0FEED=0x00000055;

 VPBDIV=0x00000002; // PCLK=1/2*CCLK

}

serial.h:

extern char sendchar (char SDat);

extern void init_serial (void);

extern int getchar (void);

void init_serial (void) { /* Initialize Serial Interface */

 PINSEL0 = PINSEL0 | 0X00000005; /* Enable RxD0 and TxD0 */

 U0LCR = 0X83; /*8 bits, no Parity, 1 Stop bit */

 U0DLL = 0XC3;

 U0DLM = 0X00; /* 9600bps baud rate */

 U0LCR = 0X03; /* DLAB = 0 */

 }

char sendchar (char SDat) { /* Write character to Serial Port */

 while (!(U0LSR & 0x20));

 return (U0THR = SDat);

 }

int getchar (void) { /* Read character from Serial Port */

 while (!(U0LSR & 0x01));

 return (U0RBR);

 }

sevensegment.h:

unsigned int srck = 0x00010000; // P0.0

unsigned int ser = 0x00020000; // P1.1

unsigned int rck = 0x00040000; // P1.3

void delay(int);

void convert_display(unsigned int);

void Clear (void);

int display(unsigned char);

unsigned char disp[10] = { 0xC0,0xcf,0xa4,0xB0,0x99,0x92,0x82,0xf8,0x80,0x90 };

void Clear (void)

 {

 unsigned int x;

 for (x=0;x<6;x++)

 {

 display(0xFF);

 }

 }

void delay(int n) /* generates one milisecond delay */

 {

 int i,j;

 for (i=1; i<=n; i++)

 for(j=0; j<=10000; j++);

 }

int display(unsigned char value)

{

 char m;

 int buffer;

 buffer = value;

 for(m=0;m<8;m++)

 {

 if(buffer&0x80) IO0SET |= ser;

 else IO0CLR |= ser;

 IO0SET |= srck;

 IO0CLR |= srck;

 buffer<<=1;

 }

 IO0SET |= rck;

 ;

 IO0CLR |= rck;

 return 0;

}

void convert_display(unsigned int value)

 {

 display(disp[(value % 10/1)]);

 display(disp[(value % 100/10)]);

 display(disp[(value % 1000/100)]);

 display(disp[(value % 10000/1000)]);

 display(disp[(value % 100000/10000)]);

 display(disp[(value % 1000000/100000)]);

 return;

 }

EXTRA PROGRAMS
DC MOTOR INTERFACE:

#include <lpc214x.h>

#include <delay.h>

int main()

{

IODIR0=(1<<0)|(1<<3);

 while(1)

 {

 IOSET0=(1<<0);

 delay_ms(1000);

 IOCLR0=(1<<0);

 delay_ms(1000);

 IOSET0=(1<<3);

 delay_ms(1000);

 IOCLR0=(1<<3);

 delay_ms(1000);

 }

}

SEVEN SEGMENT DISPLAY:

#include <lpc214x.h>

#include <sevensegment.h>

unsigned int count = 0;

int main()

{

 IO0DIR = 0x000F0000;

 Clear();

 while(1)

 {

 convert_display(count);

 count++;

 delay(100);

 if(count>999999)count=0;

 Clear();

 }

}

VIVA QUESTIONS

STUDY OF ARM EVALUATION SYSTEM

1) What are the basic units of ARM 7?

2) What is the address system supported by ARM?

3) Define RISK.

4) What are the instructions used to access the memory in ARM?

5) How are the instructions encoded in ARM machines?

6) What are the basic units of Microprocessor?

7) What is an Instruction?

8) What is clock cycle?

9) Define - RTOS

10) Define - Pipelining

11) What is cache bus?

12) What is cache miss?

13) What is meant by memory mapped I/O?

14) Define – interrupt

15) What is the function of device driver?

16) What is meant by Exception?

17) What is meant by little – endian mode?

18) What is meant by big – endian mode?

19) What is the function of CPSR?

20) What is register - indirect addressing?

21) What are the steps in programming GPIO pins of LPC2148?

22) How to interface an LED with a microcontroller?

23) Explain the PORT pin details of your program.

24) Explain IO0SET and IO0CLR registers.

25) How to disable all the LEDs from being programmed?

FLASHING OF LEDS

1. What is seven segment displays?

2. What are the different configurations of LED?

3. What is the function of GPIO?

4. What are the Pins which are used to connect LEDs?

5. How to identify 'Polarity' of LED?

6. Differentiate LED from LCD.

7. What is a use of Jumper?

8. How many numbers of LEDs present in Primer board?

9. Where LEDs are used?

10. What is the use of flash magic software?

11. Which port is used in ARM 7 processor kit?

12. Which diode suffers an avalanche breakdown?

13. What happens if the junction temperature of LED is increased?

14. What is an anti collision rate light?

15. What is fail-safe conditions

STEPPER MOTOR INTERFACE

1) Define GPIO.

2) What is the function of ULN2803?

3) How LPC2148 control stepper motor?

4) Which I/O port lines used to rotate stepper motor?

5) How stepper motor reacts for each pulse it receives?

6) What is serial communication?

7) What is parallel communication?

8) What is stepper motor & why it is named so?

9) How can be step angle is calculated?

10) What are the advantages and disadvantages of parallel communication?

11) What does instruction-pipelining mean?

12) What is the power supply required for ARM processor?

13) What is a unit for torque?

14) What is RPM rating for a DC motor?

15) What device that is used to obtain an accurate position control of rotating shafts in terms of

steps?

TEMPERATURE SENSOR

1) What is LM35?

2) Define ISP.

3) How many Analog-to-Digital Converters available as an inner peripheral in LPC2148?

4) What is the main function of analog pin in LPC 2148?

5) What is the output voltage produced by LM35 for one degree temperature?

6) What is the difference between LM 34 and LM 35 sensors?

7) How many pins are available in LM35?

8) Why Vref is set of ADC0848 to 2.56 V if analog input is connected to the LM35?

9) What is signal conditioning?

10) What is operating the operating temperature range in LM35?

11) Why LM35 is used to Measure Temperature?

12) What Does an LM35 Do?

13) List the devices used to sense temperature.

14) What is the purpose of a thermocouple?

15) What is the output voltage of a thermocouple?

ADC

1. What are the ADC operating modes in LPC2148?

2. What is meant by conversion time?

3. Why are internal ADCs preferred over external ADCs?

4. Why has 16-bit ADC more resolution than from 10-bit and 8-bit ADC?

5. What are ADC & its Resolution?

6. What is ADC operating frequency range?

7. What is Burst conversion mode?

8. What is the function of A/D Control Register

9. What is the function of A/D Global Data Register

10. What is the function of A/D Status Register

11. What is analog-to-digital (ADC) conversion error?

12. What is the function of Sample-and-hold circuits in analog-to digital converters?

13. What is meant by flash analog-to-digital converter?

14. What is the disadvantage of the flash analog-to digital converter?

15. What is the data rate available for use on USB?

DAC

1. What are the features of LPC2148 DAC?

2. What is the function of DAC register?

3. Which pin provides a voltage reference level for the D/A converter?

4. What are the applications of DAC in signal processing applications?

5. What is GIO?

6. What is the resolution of a digital-to-analog converter (DAC)?

7. What is the major advantage of the R/2R ladder digital-to-analog (DAC), as compared to a

binaryweighted

digital-to-analog DAC converter?

8. What is the resolution of a 0–5 V 6-bit digital-to-analog converter (DAC) ?

9. What are DAC configurations?

10. What are the different types of DAC Circuits?

11. What are the Limitations of the Binary Weighted DAC?

12. What are the General DAC Characteristics?

13. Define reference voltage in DAC.

14. What is full scale voltage?

15. What is settling time?

LED DIMMING USING PWM

1. What factors determine the LED dimming performance?

2. What is meant by analog dimming?

3. What is flickering effect?

4. What is the factor determines dimming of the LED

5. Why Silicon is not suitable for fabrication of light-emitting diodes?

6. Why Silicon diode is less suited for low voltage rectifier operation?

7. What is the principle of zener diode?

8. What are the materials used to make LED?

9. What type of diodes is used in FM receivers?

10. Which diode suffers an avalanche breakdown?

11. What happens if the junction temperature of LED is increased?

12. How a transfer characteristic of a diode does is related?

13. What is the requirement of a clipping action of a diode?

14. What type of rectifier circuit requires four diodes?

15. Why are the pulse width modulated outputs required in most of the applications?

16. How do the variations in an average value get affected by PWM period?

17. Name the common formats available for LED display.

18. What are the types of seven segment display?

19. What is PWM?

20. What are the applications of PWM?

REAL TIME CLOCK AND SERIAL PORT

1) What is I2C and how does it work?

2) What are the features of I2C in LPC2148 ARM7 microcontroller?

3) What is the function of I2C0CONSET register?

4) What is I2C0STAT?

5) What is the function of I2C0 Data Register?

6) What is RTC?

7) List the advantages of RTC

8) Through which port the date and time is displayed in RTC?

9) What is a serial port?

10) List the registers used to transfer data in serial port.

11) List the modes used for data transmission.

12) What is a simplex mode?

13) Which pin is used to transmit a character?

14) What is the baud rate of serial port?

15) What is the disadvantage of RS-232C?

KEYPAD AND LCD

1. What is Matrix keypad?

2. What is the concept behind keypad interface?

3. What are the functions of pull- up resistors?

4. What is key de bouncing?

5. List the steps involved when the key in a 4 x 4 keyboard matrix is being pressed.

6. What is the value obtained if no key is pressed?

7. What kind of interrupt is generated if a key has to be operated in an interrupt mode?

8. How will you identify that the key is pressed?

9. What are the steps involved in Keyboard Interfacing?

10. List the registers used to store the keyboard, display modes and other operations programmed

by CPU.

11. Name the mode of operation for a de bounce logic.

12. Name the mode when a data is entered from the left side of the display unit.

13. How many rows and columns are present in a 16 x 2 alphanumeric LCD?

14. How many data lines are there in a 16 x 2 alphanumeric LCD?

15. Which pin of the LCD is used for adjusting its contrast?

16. Which command of an LCD is used to shift the entire display to the right?

17. Which command is used to select the 2 lines and 5 x 7 matrix of an LCD?

18. What changes are to be made to send data to an LCD?

19. For reading operation from an LCD what changes in the software are introduced?

20. Which instruction is used to select the first row first column of an LCD?

EEPROM AND INTERRUPT

1) How does I2C protocol work?

2) What is EEPROM?

3) What is meant by master slave mode?

4) What is meant by non-volatile memory?

5) What is an interrupt?

6) How does an interrupt request works?

7) What is a nested interrupt?

8) What are the registers used for enabling an interrupt?

9) What is PROM?

10) What is EPROM?

11) What is mask ROM?

12) Which memory allows simultaneous read and write operations?

13) Which memory has the shortest access times?

14) Which interrupt has the highest priority?

15) What is non maskable interrupt?

16) Which is the first level of memory access by the microprocessor?

17) List the types of cache memories.

18) What is the use of an interrupt?

19) What is the use of converting an interrupt to threads in a microprocessor?

20) What are the bits used to control an external interrupts?

MAILBOX FUNCTION

1) What is IPC?

2) Define Queue.

3) What are the different types of mail box functions?

4) What is half duplex mode?

5) How many synchronous and asynchronous modes are there in serial port?

6) List the bits used to generate serial port interrupt

7) What is branch prediction?

8) Mention any two features of µC/OS – II.

9) Write the function for creating task in µC/OS – II.

10) Mention any two support devices for µC/OS – II.

11) How many user tasks can be handled by µC/OS – II?

INTERRUPT PERFORMANCE

1. When is an Interrupt Request received?

2. What is ISR?

3. How do you initialize interrupt?

4. What is Vectored Interrupt Controller?

5. What are the kinds of protection available for SRAMS ?

6. What is interrupt pipelining?

7. What is pipeline shutdown?

8. What is branch prediction?

9. What is the use of Neon Floating point engine?

10. What is the use of –vectorize option?

11. What is PTM?

12. What is ITM?

13. What is ETM?

14. What is I2S interface?

15. What is the use of “SWI” in ARM assembly?

ZIGBEE WIRELESS MODULE

1. How many UART ports available in LPC2148?

2. What is the main function of voltage convertors in UART?

3. Why Zigbee based is preferred for wireless communication?

4. What is the IEEE standard for Zigbee protocol?

5. Write the two modes of communication are used in a ZigBee network.

6. What is the function of a scheduler?

7. Mention any two features of µC/OS – II.

8. Write the function for creating task in µC/OS – II.

9. Mention any two support devices for µC/OS – II.

10. How many user tasks can be handled by µC/OS – II?

ADDITIONAL QUESTIONS:

BUZZER

1. Define Buzzer.

2. Which pin in ARM can be used to modulate Buzzer?

3. What is the function Flash magic software?

4. How the Buzzer can be disconnected in LPC2148?

5. How the volume of sound will be changed in Buzzer?

6. What is a buzzer

7. What are the applications of buzzer?

8. How buzzer is used in embedded system?

9. What is race round condition?

10. What is digital signal controller?

11. What are the features of buzzer circuit?

12. What is a semaphore?

13. What is mutexes?

14. What is the role of segment register?

15. What is watch dog timer?

RELAY

1. What is the function of relay?

2. What is the function of Opto-isolator?

3. What is the function of power transistor in LPC2148?

4. Which pin acts as an output port for relay?

5. What is a relay circuit

6. what are the applications of relay circuit

7. what are the advantages of relay circuit

8. How does combination of functions reduce memory requirements in embedded systems?

9. What is the need for DMAC in ES?

10. Mention how I/O devices are classified for embedded system?

11. Explain what is interrupt latency? How can you reduce it?

12. What does DMA address will deal with?

13. List out various uses of timers in embedded system?

14. List out some of the commonly found errors in Embedded Systems?

15. What is the difference between macro and line function.

	1.pdf (p.1-6)
	2.pdf (p.7-27)
	3.pdf (p.28-33)
	4.pdf (p.34-115)
	5.pdf (p.116-131)
	6.pdf (p.132-137)

